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Abstract—The research topic that this paper is focused on is
intrusion detection in critical network infrastructures, where
discrimination of normal activity can be easily corrected, but no
intrusions should remain undetected. The intrusion detection
system presented in this paper is based on support vector
machines that classify unknown data instances according both
to the feature values and weight factors that represent
importance of features towards the classification. The major
contribution of the proposed model is significantly decreased
false negative rate, even for the minor categories that have a
very few instances in the training set, indicating that the
proposed model is suitable for aforementioned environments.

Index Terms—Intrusion detection, machine
support vector machines, false negative rate.

learning,

I. INTRODUCTION

Machine learning based intrusion detection system (IDS)
learns to classify events based on knowledge which is
obtained from the training set. Training set for the network
IDS is the set of network connection records formed from a
raw network data. Each record is described with a set of
features and is labelled as member of appropriate class.
After the training, the system is able to predict and classify
previously unknown network traffic as normal or malicious.
Previous researches have shown that IDS systems based on
some machine learning algorithms can be computationally
expensive if they are trained with a set that has a large
number of features. As a solution, many authors have
proposed feature reduction methods that select features
important for classification and train the classifiers only with
these features. Although these systems operate at much
higher speed, it is easy to notice they are just a compromise
between accuracy and speed and that they are not suitable
for critical environments where no attack should pass
undetected. Another downgrade is that all the features in the
remaining set are considered equally, as if they contribute
with the same amount of knowledge to the classification.
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Support vector machines (SVM) solve the first problem. The
model proposed in this paper solves the second one.

In this paper, we proposed a SVM IDS model that
classifies unknown data instances according to both feature
values and the contribution of each feature towards the
classification. Feature weights are calculated by scaling the
accuracy change of a classifier from which one attribute is
removed. Comparing to unmodified SVM classifier and
classifiers trained with reduced feature sets, the proposed
model significantly reduces false negative rate and increases
detection rate for all attack categories, including minor ones.

Although some authors have made some efforts into the
similar research area which this paper deals with, their
research ended with a simulation via feature reduction. For
example, Yao et al. presented a good feature weight
calculation method based on rough sets in [1], and perform
an approximation of modified kernel function by cutting off
features with low weights. Although testing results of their
classifier indicate high detection rates and low false negative
rates, the ability to detect specific categories like User to
Root (U2R) and Remote to Local (R2L) remains unknown.
This area is explored in approximation presented in [2];
authors report high detection rates (over 99 %) for all five
categories of classifiers trained and tested with the smaller
subsets. However, comparing the results reported in the
literature is sometimes impossible due to lack of information
in papers and some methodological factors — for example,
how the training and testing subsets are created. Although
this does not have an impact on normal traffic or probing
attacks detection, it is a fundamental issue with the minor
categories — U2R and R2L.

RELATED WORK

True positive (TP) denotes if an IDS has correctly
classified an intrusion as an intrusion. False positive (FP)
denotes if an IDS has incorrectly classified normal data as an
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intrusion. True negative (TN) denotes if an IDS has correctly
classified normal data as normal. False negative (FN)
denotes if an IDS has incorrectly classified an intrusion as
normal. Equations (1), (2) and (3) define true positive rate
(TPR), which is also referred to as sensitivity, false negative
rate (FNR) and accuracy (A):

TPR =TP /(TP + FN), @)
FNR = FN /(TP + FN), @)
A=(TP+TN)/(TP+TN + FP + FN). 3)

The Knowledge Discovery and Data Mining (KDD) Cup
99 IDS evaluation data set [3] is derived from the data
gathered at MIT Lincoln Laboratory under DARPA
sponsorship with the purpose to evaluate IDS. Data is
collected from a network that simulates a typical U.S. Air
Force Local Area Network (LAN) attacked with various
types of intrusions. There are three partitions of the KDD
Cup ’99 data available: a full training set (4,898,431
instances), a 10 % version of training set, and a test set
(311,029 instances), which includes 17 new attacks (attacks
that are not included in the training sets). All intrusions are
grouped into four categories, according to the taxonomy of
Kendall [4]:

— Probing — scanning a network of computers to gather

information or find known vulnerabilities;

— Denial of Service (DoS) - causing the unavailability of

resources;

— User to Root (U2R) — exploiting vulnerabilities to gain

root access to the system;

— Remote to Local (R2L) — obtaining access to remote

system without having a user account;

Proportions of attack instances in KDD Cup 99 dataset
are given in Table I.

TABLE I. PROPORTIONS OF INSTANCES IN KDD CUP '99 DATASET.

Category Training set | 10 % train set Test set
Normal 972,780 97,278 60,593 (19.48 %)
(19.86 %) (19.69 %)
Probing 41,102 (0.84 %) | 4,107 (0.83 %) 4166 (1.34 %)
DoS 3,883,370 391,458 229,853 (73.90 %)
(79.30 %) (79.24 %)
U2R 52 (~0.00 %) | 52 (0.01 %) 70 (0.02 %)
R2L 1,126 (0.02 %) | 1,126 (0.23 %) | 16,347 (5.26 %)

The KDD Cup '99 network traffic data is connection
based. Each data record, described with 7 categorical and 34
numerical attributes, corresponds to a connection between
two IP addresses. In addition, a label is provided, indicating
whether the record is normal or it belongs to one of the four
attack categories [5]. Categorical features that have two
possible values (e.g., logged-in or land) are represented by a
binary entry with the value of 0 or 1. During the
preprocessing phase, categorical features with more than two
possible values (e.g., protocol or service) are transformed
into a set of binary features. For example, feature that has
possible values tcp, udp and icmp is mapped into three
features: (0, 0, 1), (0, 1, 0) and (1, 0O, 0).
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IV. SUPPORT VECTOR MACHINES

Support vector machines [6], [7] are supervised learning
algorithms that they learn very effectively from high
dimensional data [8], which eliminates the need for feature
reduction. The basic idea is to find a hyper-plane which
separates the d-dimensional data perfectly into two classes.
If the data is often not linearly separable, SVM's introduce
the kernel induced feature space which casts the data into a
higher dimensional space where it is separable.

The data for a two class learning problem consists of n
objects xi (I = 1, ... n) labelled with one of two labels y;
corresponding to the two classes: +1 (positive class) or -1
(negative class). Let x denotes a vector with components Xx;,
w the weight vector and b the bias which translates hyper-
plane from the origin. A linear classifier is based on a linear
discriminant function f(x)

f(x) =w'x+b= 2 WX +b. 4)
The hyper-plane
{x:f(x) =w'x+b= 0}, (5)

divides the space in two, while the sign of function f(x)
denotes the side of the hyper-plane (as shown in the Fig. 1).
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Fig. 1. Maximum margin hyper-plane division of the feature space for two
class problem.

Suppose the weight vector can be expressed as a linear
combination of the training examples, i.e. w = Y wa; Xi. This
is known as dual representation of decision boundary. The
discriminant function takes the form

f(x) = Tajx' x+b. (6)

Let k(x, x') denote the kernel function and @ its effect on

an object. In the feature space, (6) takes the form

f(x)= Tak(xx)+ b = Tajo(x) ®x)+ b.(7)

As the feature space may be high dimensional, the kernel
function must be computed efficiently. The maximum
margin classifier is the discriminant function that maximizes
the geometric margin 1/lwl, where Iwl is the norm of the
weight vector. This leads to constrained optimization
problem: minimize ¥ Iwl?, subject to

Vi (WT Xj+b) > 1,

(8)
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where i=1, ...,n. The constraints in this formulation

ensure that the maximum margin classier classifies each
example correctly, which is possible if the data is linearly
separable. In practice, data is often not linearly separable;
and even if it is, a greater margin can be achieved by
allowing the classier to misclassify some points. To allow
misclassification, (8) is modified with the slack variables &;,
as shown in (9). Slack variables allow examples to be in the
margin error (0 < & < 1) or to be misclassified (& > 1). The
bound of misclassified examples is > &

yi(w'x +b) > 1 -x;, )

where i= 1 ...,n. The constant C > 0 sets the relative
importance of maximizing the margin and minimizing the
amount of slack. This formulation is called the soft-margin
SVM, and was introduced in [7]. The optimization problem
for soft-margin classifier becomes minimizing expression
(10) subject to (9)
1, OwLP + C X X;. (10)
Using the Lagrange multipliers (dual formulation), the
optimization problems now becomes maximizing

Ya;-%IiZ;viyja@ X X;j. (11)

This formulation leads to an expansion of weight factor

W=Zyiaixi = 0. (12)

The examples x; for which a; > 0 are points that are on or
within the margin: these points are called support vectors.
The expansion in terms of the support vectors is often
sparse, and the level of sparsity (fraction of the data serving
as support vectors) is an upper bound on the error rate of the
classifier [9].

The dual formulation of the SVM optimization problem
depends on the data only through dot products. The dot
product can therefore be replaced with a non-linear kernel
function, thereby performing large margin separation in the
feature-space of the kernel. The SVM optimization problem
was traditionally solved in the dual formulation, and only
recently it was shown that the primal formulation can lead to
efficient kernel-based learning [10].

If compared to polynomial, Radial Basis Function (RBF,
also mentioned as a Gaussian in the literature) kernel has
fewer numerical difficulties. One key point is that values
range between 0 and 1, in contrast to polynomial kernels of
which kernel values may go to infinity or zero while the
degree is large. The performance of intrusion detection that
use support vector machines with different kernels is
compared in [11]. Their experiment proved that that SVM
that uses RBF kernel gives the best performance of an SVM
based IDS system.

V. CONSTRUCTING THE ADAPTIVE SVM MODEL

Systems based on feature weight calculation have been
simulated with the simple feature reduction that cuts off

features with low weights [1], [12], experimentally tested
and provided high detection rate. Lack of approximation is a
small set of features extracted for U2R and R2L categories
that contain the most dangerous attacks and have the least
instances in the training set.

The model presented in this paper does not perform a
simulation. A model is trained with the following set of
instances: {[label] L:i1-wi 2: i>w2 3: ... 41: ia1-Wa1}, Where iy,
io, ..., 121 denote feature values and wy, Wy, ..., Wa1 Weights
assigned to corresponding features.

There are various methods to calculate weight factors.
One method is based on rough set theory, as described in
[1]. The method based on achieving weights directly from
support vector decision function is presented in [2].
Although obtaining this information is possible only if a
trained L2-loss linear model is used [13], authors do not
provide sufficient information needed for further discussion.

The proposed algorithm for feature weight calculation is
derived from a feature reduction algorithm presented in [2].
Feature weights are calculated according to the accuracy
change of a classifier trained with a set from which one
feature was removed. Let a denotes the accuracy of classifier
trained with all features, and let a; denotes the accuracy of a
classifier trained with all features except feature i. Accuracy
change for that classifier Aa; is given with the expression

Aaj =a- aj. (13)

The smallest and the largest accuracy changes (Aamin and

Aamay) are defined with (14) and (15):

(14)
(15)

Aapip = min(Aa;),

Aay = max(Aa;),

where i=1, ... 41. Feature weight w; of the feature i is
calculated with (16) and scaled to a range [0, 1]

Wi = (Aqj — Aapiy) / (Aaypax — Adpip).  (16)

VI. EXPERIMENTS

Experiments were conducted with LibSVM 3.16 using
generic RBF kernel. After preprocessing the dataset (linear
scaling of numerical attributes and conversion of categorical
attributes to binary) and importing it into LibSVM format,
the experiment has been conducted as follows:

— Determine optimal hyper-parameters (soft margin

constant C and Gaussian kernel parameter y) of the model

using v-fold cross validation and grid search; optimal pair

(C, y) provides a classifier that can accurately predict

unknown data;

— Train the SVM classifier with a 10 % training set;

— Calculate feature weights wi (scaled to [0, 1]);

— Scale the training and test set with feature weights;

— Find the optimal hyper-parameters of the new model;

— Train the SVM classifier with scaled training set;

— Test the new model with three randomly generated test

sets (50,000 instances each).

Feature weights calculation based on classifier accuracy
change required 41 additional experiments in which features
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were removed one at a time. Detection rates and false
negative rates of the proposed model are measured and
compared to original model. Performance of the original
model (SVM) is given in Table Il, performance of the
proposed model (AC+SVM) is given in Table IlI, and the
comparison of classifiers is given in Table IV.

TABLE 1l. PERFORMANCE OF THE ORIGINAL SVM CLASSIFIER.

Testset 1 Testset 2 Test set 3
Testing time (sec) 11.41 9.62 10.07
Accuracy (%) 98.15 % 97.99 % 97.55 %
FN (%) 1.24 % 1.25 % 1.62 %

TABLE Ill. PERFORMANCE OF THE MODEL EXPANDED WITH
FEATURE WEIGHTS CALCULATED FROM ACCURACY CHANGES

(AC + SVM).
Testset1 Test set 2 Testset3
Testing time (sec) 12.5 9.61 9.68
Accuracy (%) 99.12 % 99.16 % 99.18 %
FN (%) 0.53 % 0.42 % 0.38 %

TABLE IV. IDS PERFORMANCE COMPARISON. VALUES IN THE
TABLE ARE AVERAGES FOR ALL THREE TESTING SETS.

SVM AC+SVM
Testing time (sec) 10.6 10.6
Accuracy (%) 97.90 % 99.15 %
FN (%) 1.37% 0.44 %

VIl. COMPARISON TO FEATURE REDUCTION-BASED SVM

To prove the benefits of the model presented in this paper,
its performance is compared to the performance of
classifiers trained with reduced feature sets. Reduced sets are
generated with the empirical method presented in [2], F-
score ranking method presented in [14] and rough set feature
reduction algorithm presented in [1].

TABLE V. AVERAGE PERFORMANCE OF THE FEATURE
REDUCTION BASED CLASSIFIERS.

Empirical F-score Rough set
Features 31 23 26
Testing time (sec) 8.93 6.86 8.48
Accuracy (%) 97.55 % 97.73 % 97.02 %
FN (%) 1.29 % 1.62 % 1.66 %

TABLE VI. IDS PERFORMANCE COMPARISON. VALUES IN THE
TABLE ARE AVERAGES FOR ALL THREE TESTING SETS.

Model Accuracy (%) FN (%)

Proposed model (AC+SVM) 99.15 % 0.44 %
Empirical feature reduction 97.55 % 1.29%
F-score feature reduction 97.73 % 1.62 %
Rough set feature reduction 97.02 % 1.66 %

The aforementioned methods generate reduced feature
sets with 31, 23 and 26 features upon which classifier
models are built. As with the proposed model, reduced set
classifiers have been tested on three test sets with 50,000
randomly selected instances. Average results of feature
reduction-based classifiers are given in Table V. The
comparison of the proposed model and feature reduced
classifiers is given in Table VI.

60

VIII.

A new SVM based intrusion detection system that
classifies unknown data instances according to the feature
values and feature weights has been presented in this paper.
Model’s performance is compared to original, unmodified
SVM classifiers and classifiers based on training sets formed
by different feature reduction methods. System is capable to
detect even the minor attack categories with high detection
accuracy, and false negative rate is significantly decreased.

Although detection accuracy is not a major improvement,
significantly reduced false negative rate provides an IDS
system with high sensitivity, capable of detecting R2L and
U2R attacks, which represent the most dangerous attacks in
the training set.

System is capable to self-determine optimal hyper-
parameters of the classifier and operates at high speed (one
dot product per classification).

In the further researches we will analyse the multi-class
SVMs [15] expanded by feature vectors and form a system
capable to readjust feature weights and optimal model
hyper-parameters according to changes in the environment
where the system is deployed.

CONCLUSIONS
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